
Python3 Builtins

marco milanesio

MScDSAI

Personal productivity tool

● Python is a tool

– Munging

– Cleaning

– Counting

– Organising

● Secret weapons

– tuple, list, set, dict

– collections module

– builtin operations

Everywhere

● The builtin types are always available:

– All versions of Python

– All operating systems

– All distributions of Python

● You don’t have to install anything

Flexibility

● Dynamic typing

– You can make data structures out of anything

(almost)

– You barely need to think about it

– It just “works” (mandatory quotes)

● If it walks like a duck and it quacks like a duck,

then it must be a duck.

● https://en.wikipedia.org/wiki/Duck_typing

https://en.wikipedia.org/wiki/Duck_typing

Performance

● Builtin types are fast for coding

• Memory is cheap

• CPU cycles are cheap

• Your time is expensive

● They provide a basic foundation for exploring
ideas

● Optimise later (if needed)

Easiness

● Abstract away “annoying” details (memory)

● You still have to think

● Personal productivity

● The Zen of Python

– import this

Builtin types

Tuple ()

● Record, Structure

● IMMUTABLE

● Packing and unpacking

● A row in a database

record = (val1, val2, val3)
a, b, c = record
val = record[0]

List []

● Mutable sequence, Array

● Enforcing order

items = [val1, val2, val3]
x = items[2]
items[0] = x
del items[1]
items.append(value)
items.sort()
new_items = sorted(items)

Set {}

● Set

● Uniqueness, membership tests

s = {val1, val2, val3}
s.add(val4)
s.remove(val2)
val in s

s1 | s2 s1.union(s2)
s1 & s2 s1.intersection(s2)

Dict {:}

● Mapping, Associative array

● Lookup tables, indices

d = {key1: val1, key2:val2, key3:val3}
val = d[key]
d[key] = val
del d[key]
key in d

defaultdict

● collections.defaultdict

● Multidicts, one-to-many relationships

● Grouping

● Avoid KeyError

d = defaultdict(list)
d[key].append(value)
values = d[key]

d = defaultdict(set)
d[key].add(value)
unique_values = d[key]

Counter

● collections.Counter

● Counting, histograms, tabulations

c = Counter(sequence)
c[key] += n
c.most_common(n)

Iterations & Co.

● Iterations

● Variants

● Reductions

for item in sequence:
 …

for pos, item in enumerate(sequence):
 …
for x, y in zip(sequence1, sequence2):
 …

sum(sequence)
min(sequence)
max(sequence)
any(sequence)
all(sequence)

[list,set,dict]-comprehension

● List comprehension

● Set comprehension

● Dict comprehension

[expr for x in iterable if condition]

{ expr for x in iterable if condition }

{ k:v for k,v in iterable if condition}

Generators

● Generator expression

● Combined with reduction

● This allows you to process HUGE amounts of data
incrementally saving tons of memory!

– feed loops...

(expr for x in iterable if condition)

sum(expr for x in iterable if condition)

