
DEEP LEARNING

part II: neural networks

marco milanesio



About tensors

● Vector


– Usually, an arrow

– Something with a magnitude and a 
direction


– Representing “stuff”

• Velocity, Force, Area, ...

v



About tensors

● Vector

● Unit-vector


– i, j, k

– length = 1

– v = a*i + b*j + c*k

x

z

y

v



About tensors

● Vector

● Unit-vector

● Component


– v = (a, b, c)


x

z

y

v

This is a rank-1 tensor

a

b

c



tensors

● Generalization of vectors

● Rank is related to the number of 
“simultaneous” directions


● In a N-dimensional space:


0 scalar

1 vector

2 NxN matrix

>=3 tensor



tensors in pytorch

● np.ndarray

● on steroids

● GPUs love tensors

● can convert to/from numpy



about activation functions

● step 

● sigmoid

● tanh

● ReLU

●  depends on the data!

● see notebook




about neural networks

● perceptron

● Feed-forward NN

● Multilayer perceptron

● CNN

● RNN

● …




why layers?

● Layer == collection of neurons

● Each layer has its purpose

● Learning is done with the layers


● ALL NEURONS IN ALL LAYERS WORK IN THE 
EXACT SAME WAY


● Calculate sum of weighted inputs + bias

● Calculate the result of the activation function




how many neurons?

● Input layer

● Number of features + 1 (for bias)


● Output layer

● 1 

● 1

● N


● Hidden layer

● # samples / factor * (input + output)

● Empirical

● Factor in (1,10) to avoid overfitting



how many layers?

● Input layer

● 1(of course)


● Output layer

● 1 (of course)


● Hidden layer

● 1 (universal approximation theorem)


● Not so deep…

● 0 layer -> linearly separable functions

● 1 layer -> any continuous function 

● 2 layers -> arbitrary decision boundaries

● >2 layers -> complex representations, automatic feature 

engineering 



perceptron

x1

x2

x3

o1

w1

w2

w3 output

Perceptron

. binary classifier


+ can implement SOME logic gates




Feed-Forward NN

x1

x2

x3

o1

Basic Neural Network

. classification

. computer vision


+ w/wout hidden layers

+ no backpropagation

+ easy to design

+ highly responsive to noisy data

+ number of layers ~ complexity of func


- static weights

- no deep learning

o2

o3



Multi-layer perceptron

Standard Neural Network

. speech recognition

. complex classification


+ hidden layers

+ backpropagation

+ deep learning


- difficult to design

- dynamic weights




Convolutional NN

CNN

. image classification


+ 3D arrangements of neurons

+ learn image by part

+ FF-only if more convolutional layers

+ FF + BP if outputs to fully connected

+ fewer parameters than fully connected

source: wikipedia



Recurrent NN

RNN

. speech recognition

. text to speech

. sentiment analysis


+ save the output of a layer

+ model sequential data


- gradient vanishing

source: wikipedia



about frameworks

● pytorch 

● Low level API

● Fine tuning

● Focus: Broader machine learning


● Tensorflow

● Low/High level API

● Focus: Machine learning


● Keras

● High level API

● Works on Tensorflow, Theano, etc..

● Focus: Deep Neural Networks




about frameworks

● pip install torch torchvision

● pip install –upgrade tensorflow

● pip install keras


● Use a virtual-environment if you do not 
want to mess up too badly. Your choice.


● Python3-venv

● Conda

● …


● Or google colab



