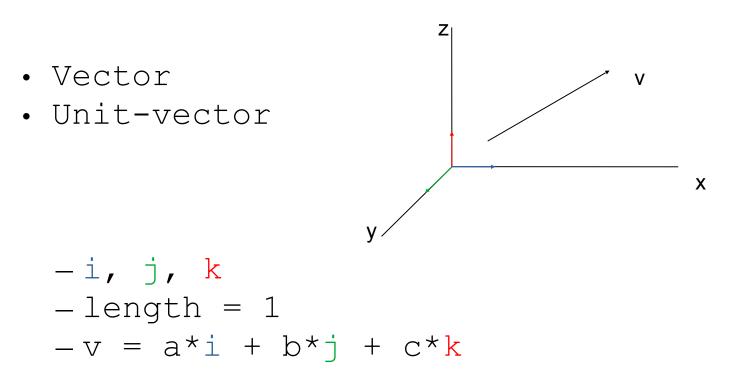
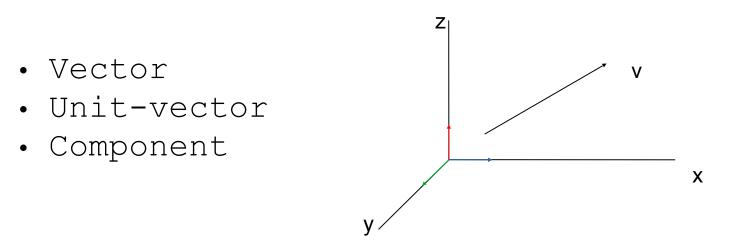
DEEP LEARNING part II: neural networks

marco milanesio

About tensors


• Vector


-Usually, an **arrow**

- Something with a **magnitude** and a **direction**
- -Representing "stuff"
 - Velocity, Force, Area, ...

About tensors

About tensors

$$-v = (a, b, c)$$

tensors

- Generalization of vectors
- Rank is related to the number of "simultaneous" directions
- In a N-dimensional space:

0	scalar
1	vector
2	NxN matrix
>=3	tensor

tensors in pytorch

- np.ndarray
- on steroids
- GPUs love tensors
- can convert to/from numpy

about activation functions

- step
- sigmoid
- tanh
- ReLU
- \rightarrow depends on the data!
- see notebook

about neural networks

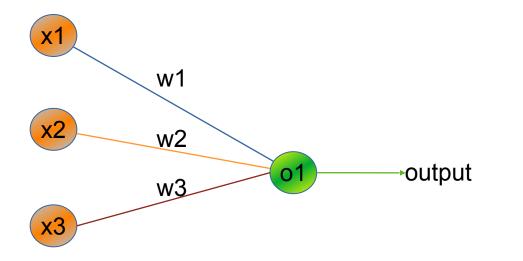
- perceptron
- Feed-forward NN
- Multilayer perceptron
- CNN
- RNN
- ...

why layers?

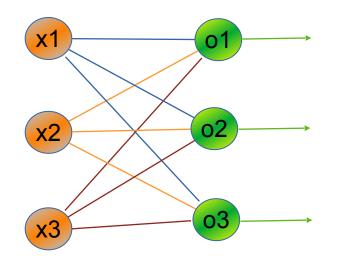
- Layer == collection of neurons
- Each layer has its purpose
- Learning is done with the layers
- ALL NEURONS IN ALL LAYERS WORK IN THE EXACT SAME WAY
 - Calculate sum of weighted inputs + bias
 - Calculate the result of the activation function

how many neurons?

- Input layer
 - Number of features + 1 (for bias)
- Output layer
 - 1
 - 1
 - N
- Hidden layer
 - # samples / factor * (input + output)
 - Empirical
 - Factor in (1,10) to avoid overfitting

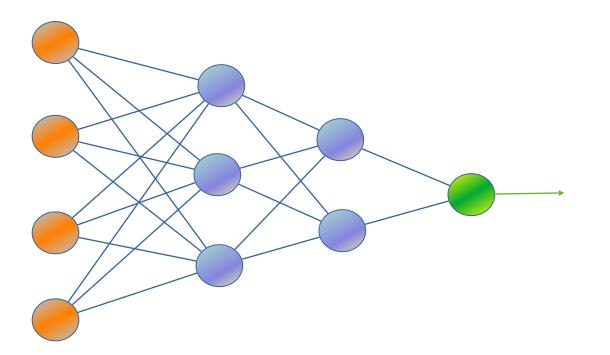

how many layers?

- Input layer
 - 1(of course)
- Output layer
 - 1 (of course)
- Hidden layer
 - 1 (universal approximation theorem)
- Not so deep...
 - 0 layer -> linearly separable functions
 - 1 layer -> any continuous function
 - 2 layers -> arbitrary decision boundaries
 - >2 layers -> complex representations, automatic feature engineering


perceptron

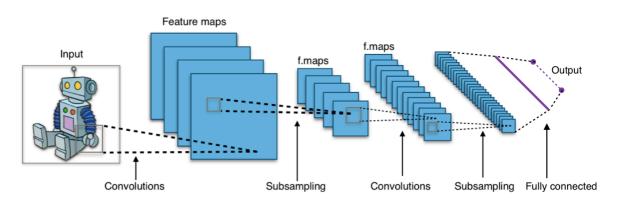
Perceptron

- . binary classifier
- + can implement SOME logic gates


Feed-Forward NN

Basic Neural Network

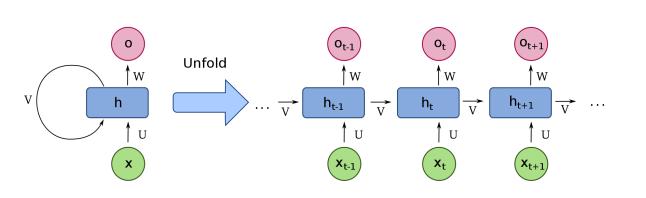
- . classification
- . computer vision
- + w/wout hidden layers
- + no backpropagation
- + easy to design
- + highly responsive to noisy data
- + number of layers ~ complexity of func
- static weights
- no deep learning


Multi-layer perceptron

Standard Neural Network

- . speech recognition
- . complex classification
- + hidden layers
- + backpropagation
- + deep learning
- difficult to design
- dynamic weights

Convolutional NN



source: wikipedia

CNN

- . image classification
- + 3D arrangements of neurons
- + learn image by part
- + FF-only if more convolutional layers
- + FF + BP if outputs to fully connected
- + fewer parameters than fully connected

Recurrent NN

source: wikipedia

RNN

- . speech recognition
- . text to speech
- . sentiment analysis
- + save the output of a layer
- + model sequential data
- gradient vanishing

about frameworks

- pytorch
 - Low level API
 - Fine tuning
 - Focus: Broader machine learning
- Tensorflow
 - Low/High level API
 - Focus: Machine learning
- Keras
 - High level API
 - Works on Tensorflow, Theano, etc..
 - Focus: Deep Neural Networks

about frameworks

- pip install torch torchvision
- pip install -upgrade tensorflow
- pip install keras
- Use a virtual-environment if you do not want to mess up too badly. Your choice.
 - Python3-venv
 - Conda
 - ...
- Or google colab