
DEEP LEARNING
part II: neural networks

marco milanesio

About tensors

● Vector

– Usually, an arrow
– Something with a magnitude and a
direction

– Representing “stuff”
• Velocity, Force, Area, ...

v

About tensors

● Vector
● Unit-vector

– i, j, k
– length = 1
– v = a*i + b*j + c*k

x

z

y

v

About tensors

● Vector
● Unit-vector
● Component

– v = (a, b, c)

x

z

y

v

This is a rank-1 tensor

a
b
c

tensors

● Generalization of vectors
● Rank is related to the number of
“simultaneous” directions

● In a N-dimensional space:

0 scalar

1 vector

2 NxN matrix

>=3 tensor

tensors in pytorch

● np.ndarray
● on steroids
● GPUs love tensors
● can convert to/from numpy

about activation functions

● step
● sigmoid
● tanh
● ReLU
● depends on the data!
● see notebook

about neural networks

● perceptron
● Feed-forward NN
● Multilayer perceptron
● CNN
● RNN
● …

why layers?

● Layer == collection of neurons
● Each layer has its purpose
● Learning is done with the layers

● ALL NEURONS IN ALL LAYERS WORK IN THE
EXACT SAME WAY

● Calculate sum of weighted inputs + bias
● Calculate the result of the activation function

how many neurons?

● Input layer
● Number of features + 1 (for bias)

● Output layer
● 1
● 1
● N

● Hidden layer
● # samples / factor * (input + output)
● Empirical
● Factor in (1,10) to avoid overfitting

how many layers?

● Input layer
● 1(of course)

● Output layer
● 1 (of course)

● Hidden layer
● 1 (universal approximation theorem)

● Not so deep…
● 0 layer -> linearly separable functions
● 1 layer -> any continuous function
● 2 layers -> arbitrary decision boundaries
● >2 layers -> complex representations, automatic feature

engineering

perceptron

x1

x2

x3

o1

w1

w2

w3 output

Perceptron
. binary classifier

+ can implement SOME logic gates

Feed-Forward NN

x1

x2

x3

o1

Basic Neural Network
. classification
. computer vision

+ w/wout hidden layers
+ no backpropagation
+ easy to design
+ highly responsive to noisy data
+ number of layers ~ complexity of func

- static weights
- no deep learning

o2

o3

Multi-layer perceptron

Standard Neural Network
. speech recognition
. complex classification

+ hidden layers
+ backpropagation
+ deep learning

- difficult to design
- dynamic weights

Convolutional NN

CNN
. image classification

+ 3D arrangements of neurons
+ learn image by part
+ FF-only if more convolutional layers
+ FF + BP if outputs to fully connected
+ fewer parameters than fully connected

source: wikipedia

Recurrent NN

RNN
. speech recognition
. text to speech
. sentiment analysis

+ save the output of a layer
+ model sequential data

- gradient vanishing

source: wikipedia

about frameworks

● pytorch
● Low level API
● Fine tuning
● Focus: Broader machine learning

● Tensorflow
● Low/High level API
● Focus: Machine learning

● Keras
● High level API
● Works on Tensorflow, Theano, etc..
● Focus: Deep Neural Networks

about frameworks

● pip install torch torchvision
● pip install –upgrade tensorflow
● pip install keras

● Use a virtual-environment if you do not
want to mess up too badly. Your choice.

● Python3-venv
● Conda
● …

● Or google colab

