{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "a8df07b6", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import pandas as pd\n", "import numpy as np\n", "# pip install scikit-learn\n", "from sklearn.linear_model import LogisticRegression" ] }, { "cell_type": "code", "execution_count": 2, "id": "091a03ef", "metadata": {}, "outputs": [], "source": [ "hours = np.arange(0.5, 6, 0.5)" ] }, { "cell_type": "code", "execution_count": 3, "id": "1bac76da", "metadata": {}, "outputs": [], "source": [ "outcome = np.array([0,0,0,0,0,0,1,0,0,1,1,1,1,1,1])" ] }, { "cell_type": "code", "execution_count": 4, "id": "27ff8e1f", "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame.from_records(zip(hours, outcome), columns=['hours', 'outcome'])" ] }, { "cell_type": "code", "execution_count": 5, "id": "124b3554", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
hoursoutcome
00.50
11.00
21.50
32.00
42.50
53.00
63.51
74.00
84.50
95.01
105.51
\n", "
" ], "text/plain": [ " hours outcome\n", "0 0.5 0\n", "1 1.0 0\n", "2 1.5 0\n", "3 2.0 0\n", "4 2.5 0\n", "5 3.0 0\n", "6 3.5 1\n", "7 4.0 0\n", "8 4.5 0\n", "9 5.0 1\n", "10 5.5 1" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 6, "id": "35322905", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAAsTAAALEwEAmpwYAAAOHUlEQVR4nO3df6jd913H8edrSevCfhXMVdokLgWzYBli56EKFR1us2kd6cAfS2XipCz/rDLZqLQoVSuCMzAcWH/EOeamrnRbLcFFo7jKmKxbbpZutamREDub22HvfmQ6ltkfvv3jno7b25vck+bc+13e9/mAsHu+59PzeX/vDk8O58c9qSokSRe/Fw09gCRpOgy6JDVh0CWpCYMuSU0YdElqYuNQG2/evLm2b98+1PaSdFE6cuTIl6tqZrnrBgv69u3bmZ2dHWp7SbooJfni2a7zKRdJasKgS1ITBl2SmjDoktSEQZekJlZ8l0uS9wNvBJ6oqlcvc32A9wI3AN8E3lpVn5v2oFJn9x2dY9+h4zx++gxXXLaJW6/byZuu3jL0WC0N+bte7b0neYT+AWDXOa6/Htgx/rcX+OMLH0taP+47Osft9z7E3OkzFDB3+gy33/sQ9x2dG3q0dob8Xa/F3isGvao+CXz1HEtuBD5YCx4ALkty+bQGlLrbd+g4Z5565jnHzjz1DPsOHR9oor6G/F2vxd7TeA59C/DYosunxseeJ8neJLNJZufn56ewtXTxe/z0mfM6rhduyN/1Wuy9pi+KVtX+qhpV1WhmZtlPrkrrzhWXbTqv43rhhvxdr8Xe0wj6HLBt0eWt42OSJnDrdTvZdMmG5xzbdMkGbr1u50AT9TXk73ot9p7G33I5ANyS5G7gR4CvV9WXpnC70rrw7LscfJfL6hvyd70We2el7xRN8mHgtcBm4L+A3wQuAaiqPxm/bfEPWXgnzDeBX66qFf/q1mg0Kv84lySdnyRHqmq03HUrPkKvqptWuL6At7/A2SRJU+InRSWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmJgp6kl1Jjic5keS2Za7/viT3Jzma5AtJbpj+qJKkc1kx6Ek2AHcB1wNXATcluWrJst8A7qmqq4E9wB9Ne1BJ0rlN8gj9GuBEVZ2sqieBu4Ebl6wp4OXjn18BPD69ESVJk5gk6FuAxxZdPjU+tthvAW9Jcgo4CPzKcjeUZG+S2SSz8/PzL2BcSdLZTOtF0ZuAD1TVVuAG4ENJnnfbVbW/qkZVNZqZmZnS1pIkmCzoc8C2RZe3jo8tdjNwD0BVfRp4MbB5GgNKkiYzSdAPAzuSXJnkUhZe9DywZM1/Aq8DSPIDLATd51QkaQ2tGPSqehq4BTgEPMLCu1keTnJnkt3jZe8C3pbk88CHgbdWVa3W0JKk59s4yaKqOsjCi52Lj92x6OdjwLXTHU2SdD78pKgkNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpqYKOhJdiU5nuREktvOsubnkxxL8nCSv57umJKklWxcaUGSDcBdwBuAU8DhJAeq6tiiNTuA24Frq+prSb5ntQaWJC1vkkfo1wAnqupkVT0J3A3cuGTN24C7quprAFX1xHTHlCStZJKgbwEeW3T51PjYYq8CXpXkX5I8kGTXcjeUZG+S2SSz8/PzL2xiSdKypvWi6EZgB/Ba4Cbgz5JctnRRVe2vqlFVjWZmZqa0tSQJJgv6HLBt0eWt42OLnQIOVNVTVfUfwL+zEHhJ0hqZJOiHgR1JrkxyKbAHOLBkzX0sPDonyWYWnoI5Ob0xJUkrWTHoVfU0cAtwCHgEuKeqHk5yZ5Ld42WHgK8kOQbcD9xaVV9ZraElSc+Xqhpk49FoVLOzs4PsLUkXqyRHqmq03HV+UlSSmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqYqKgJ9mV5HiSE0luO8e6n0lSSUbTG1GSNIkVg55kA3AXcD1wFXBTkquWWfcy4B3AZ6Y9pCRpZZM8Qr8GOFFVJ6vqSeBu4MZl1v0O8G7gW1OcT5I0oUmCvgV4bNHlU+Nj35bkNcC2qvr4uW4oyd4ks0lm5+fnz3tYSdLZXfCLokleBLwHeNdKa6tqf1WNqmo0MzNzoVtLkhaZJOhzwLZFl7eOjz3rZcCrgX9O8ijwo8ABXxiVpLU1SdAPAzuSXJnkUmAPcODZK6vq61W1uaq2V9V24AFgd1XNrsrEkqRlrRj0qnoauAU4BDwC3FNVDye5M8nu1R5QkjSZjZMsqqqDwMElx+44y9rXXvhYkqTz5SdFJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUxERBT7IryfEkJ5Lctsz170xyLMkXkvxTkldOf1RJ0rmsGPQkG4C7gOuBq4Cbkly1ZNlRYFRVPwh8FPj9aQ8qSTq3SR6hXwOcqKqTVfUkcDdw4+IFVXV/VX1zfPEBYOt0x5QkrWSSoG8BHlt0+dT42NncDPzdclck2ZtkNsns/Pz85FNKklY01RdFk7wFGAH7lru+qvZX1aiqRjMzM9PcWpLWvY0TrJkDti26vHV87DmSvB74deAnqup/pzOeJGlSkzxCPwzsSHJlkkuBPcCBxQuSXA38KbC7qp6Y/piSpJWsGPSqehq4BTgEPALcU1UPJ7kzye7xsn3AS4GPJHkwyYGz3JwkaZVM8pQLVXUQOLjk2B2Lfn79lOeSJJ0nPykqSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNbFxkkVJdgHvBTYA76uq31ty/XcBHwR+GPgK8OaqenS6o8J9R+fYd+g4j58+wxWXbeLW63bypqu3THub76i9Pef++w5pPd6/Olsx6Ek2AHcBbwBOAYeTHKiqY4uW3Qx8raq+P8ke4N3Am6c56H1H57j93oc489QzAMydPsPt9z4EsOp3gqH29pz77zuk9Xj/6m6Sp1yuAU5U1cmqehK4G7hxyZobgb8Y//xR4HVJMr0xYd+h49/+P/9ZZ556hn2Hjk9zm++ovT3n/vsOaT3ev7qbJOhbgMcWXT41Prbsmqp6Gvg68N1LbyjJ3iSzSWbn5+fPa9DHT585r+PTNNTennP/fYe0Hu9f3a3pi6JVtb+qRlU1mpmZOa//9orLNp3X8Wkaam/Puf++Q1qP96/uJgn6HLBt0eWt42PLrkmyEXgFCy+OTs2t1+1k0yUbnnNs0yUbuPW6ndPc5jtqb8+5/75DWo/3r+4meZfLYWBHkitZCPce4BeWrDkA/BLwaeBngU9UVU1z0GdfKBniVfGh9vac++87pPV4/+ouk3Q3yQ3AH7DwtsX3V9XvJrkTmK2qA0leDHwIuBr4KrCnqk6e6zZHo1HNzs5e6PyStK4kOVJVo+Wum+h96FV1EDi45Ngdi37+FvBzFzKkJOnC+ElRSWrCoEtSEwZdkpow6JLUxETvclmVjZN54IuDbH5hNgNfHnqINbbeznm9nS94zheTV1bVsp/MHCzoF6sks2d7y1BX6+2c19v5gufchU+5SFITBl2SmjDo52//0AMMYL2d83o7X/CcW/A5dElqwkfoktSEQZekJgz6hJK8P8kTSf516FnWQpJtSe5PcizJw0neMfRMqy3Ji5N8Nsnnx+f820PPtFaSbEhyNMnfDj3LWkjyaJKHkjyYpM2fffU59Akl+XHgG8AHq+rVQ8+z2pJcDlxeVZ9L8jLgCPCmJV8O3sr4e3BfUlXfSHIJ8CngHVX1wMCjrbok7wRGwMur6o1Dz7PakjwKjKrqYvxg0Vn5CH1CVfVJFv7W+7pQVV+qqs+Nf/4f4BGe/12yrdSCb4wvXjL+1/4RT5KtwE8D7xt6Fl0Yg64VJdnOwpeXfGbgUVbd+KmHB4EngH+sqvbnzMKX1/wa8H8Dz7GWCviHJEeS7B16mGkx6DqnJC8FPgb8alX999DzrLaqeqaqfoiF7869Jknrp9eSvBF4oqqODD3LGvuxqnoNcD3w9vFTqhc9g66zGj+P/DHgr6rq3qHnWUtVdRq4H9g18Cir7Vpg9/g55buBn0zyl8OOtPqqam78v08AfwNcM+xE02HQtazxC4R/DjxSVe8Zep61kGQmyWXjnzcBbwD+bdChVllV3V5VW6tqOwtfAP+JqnrLwGOtqiQvGb/QT5KXAD8FtHj3mkGfUJIPA58GdiY5leTmoWdaZdcCv8jCI7YHx/9uGHqoVXY5cH+SLwCHWXgOfV28jW+d+V7gU0k+D3wW+HhV/f3AM02Fb1uUpCZ8hC5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ18f+/+CyLdTEmuAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x = df['hours']\n", "y = df['outcome']\n", "plt.scatter(x,y)" ] }, { "cell_type": "code", "execution_count": 7, "id": "c1504f99", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 11 entries, 0 to 10\n", "Data columns (total 2 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 hours 11 non-null float64\n", " 1 outcome 11 non-null int64 \n", "dtypes: float64(1), int64(1)\n", "memory usage: 304.0 bytes\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": 8, "id": "80492877", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD4CAYAAAD2FnFTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUEElEQVR4nO3df/BddZ3f8efLEESQVdxEl8kPwm4ZlV3kx36FtrgVtoLxF7iz226oWtbRTWcLrdZOW7A7YHHacXen6rqyC6lmEHcFVxGbrVGIFaXWRfINRpAgJY2sJDqTLKEiwpAG3/3jntTLl883ufkm53tDvs/HzJ3vOZ8f977vP3nlnPO556SqkCRpqueMuwBJ0qHJgJAkNRkQkqQmA0KS1GRASJKajhh3AQfTggULatmyZeMuQ5KeNTZs2PC3VbWw1XdYBcSyZcuYnJwcdxmS9KyR5G+m6/MUkySpyYCQJDUZEJKkJgNCktRkQEiSmgwISVJTbwGRZEmS25JsSnJvknc1xiTJR5JsTnJ3kjOG+i5O8kD3urivOiVJbX3+DmI38K+r6q4kxwIbkqyrqk1DY14HnNS9zgL+DDgryYuAK4EJoLq5a6rqkR7rlSQN6e0Ioqp+WFV3dds/Bu4DFk0ZdiFwfQ3cAbwwyfHAa4F1VbWzC4V1wPK+apUkPdOs/JI6yTLgdOCbU7oWAQ8N7W/t2qZrb733SmAlwNKlSw9OwZI0A8su+8JYPvfBD7yhl/ft/SJ1kucDNwHvrqpHD/b7V9WqqpqoqomFC5u3E5EkzUCvAZFkPoNw+Iuq+lxjyDZgydD+4q5tunZJ0izpcxVTgI8D91XVB6cZtgb4p91qpr8L/KiqfgjcApyf5LgkxwHnd22SpFnS5zWIs4G3Afck2di1vRdYClBV1wBrgdcDm4HHgbd3fTuTvB9Y3827qqp29lirJGmK3gKiqr4OZB9jCrhkmr7VwOoeSpMkjcBfUkuSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1NTbA4OSrAbeCGyvql9p9P8b4C1DdbwcWNg9Te5B4MfAU8Duqproq05JUlufRxDXAcun66yqP6qq06rqNOBy4GtTHit6btdvOEjSGPQWEFV1OzDqc6QvAm7oqxZJ0v4b+zWIJEczONK4aai5gFuTbEiycjyVSdLc1ts1iP3wJuB/Tjm99Kqq2pbkxcC6JN/tjkieoQuQlQBLly7tv1pJmiPGfgQBrGDK6aWq2tb93Q7cDJw53eSqWlVVE1U1sXDhwl4LlaS5ZKwBkeQFwKuB/zrUdkySY/dsA+cD3xlPhZI0d/W5zPUG4BxgQZKtwJXAfICquqYb9hvArVX1k6GpLwFuTrKnvk9V1Zf6qlOS1NZbQFTVRSOMuY7Bctjhti3Aqf1UJUka1aFwDUKSdAgyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJauotIJKsTrI9SfN50knOSfKjJBu71xVDfcuT3J9kc5LL+qpRkjS9Po8grgOW72PM/6iq07rXVQBJ5gFXA68DTgYuSnJyj3VKkhp6C4iquh3YOYOpZwKbq2pLVe0CbgQuPKjFSZL2adzXIP5ekm8n+WKSX+7aFgEPDY3Z2rU1JVmZZDLJ5I4dO/qsVZLmlHEGxF3ACVV1KvAnwOdn8iZVtaqqJqpqYuHChQezPkma08YWEFX1aFU91m2vBeYnWQBsA5YMDV3ctUmSZtHYAiLJLyRJt31mV8vDwHrgpCQnJjkSWAGsGVedkjRXHdHXGye5ATgHWJBkK3AlMB+gqq4Bfgv4vSS7gSeAFVVVwO4klwK3APOA1VV1b191SpLaeguIqrpoH/0fBT46Td9aYG0fdUmSRjPuVUySpEOUASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUlNvAZFkdZLtSb4zTf9bktyd5J4k30hy6lDfg137xiSTfdUoSZreSAGR5JQZvPd1wPK99H8PeHVVnQK8H1g1pf/cqjqtqiZm8NmSpAM06hHEnya5M8k/T/KCUSZU1e3Azr30f6OqHul27wAWj1iLJGkWjBQQVfVrwFuAJcCGJJ9Kct5BrOMdwBeHPxK4NcmGJCv3NjHJyiSTSSZ37NhxEEuSpLntiFEHVtUDSX4fmAQ+ApyeJMB7q+pzMy0gybkMAuJVQ82vqqptSV4MrEvy3e6IpFXXKrrTUxMTEzXTOiRJTzfqNYhXJPkQcB/w68Cbqurl3faHZvrhSV4BfAy4sKoe3tNeVdu6v9uBm4EzZ/oZkqSZGfUaxJ8AdwGnVtUlVXUXQFX9APj9mXxwkqXA54C3VdX/Gmo/Jsmxe7aB84HmSihJUn9GPcX0BuCJqnoKIMlzgKOq6vGq+mRrQpIbgHOABUm2AlcC8wGq6hrgCuDnGVwAB9jdrVh6CXBz13YE8Kmq+tLMvp4kaaZGDYgvA68BHuv2jwZuBf7+dBOq6qK9vWFVvRN4Z6N9C3DqM2dIkmbTqKeYjqqqPeFAt310PyVJkg4FowbET5KcsWcnya8CT/RTkiTpUDDqKaZ3A59J8gMgwC8Av91XUZKk8RspIKpqfZKXAS/tmu6vqv/bX1mSpHEb+YdywCuBZd2cM5JQVdf3UpUkaexGCogknwR+CdgIPNU1F2BASNJhatQjiAng5KryVhaSNEeMuorpOwwuTEuS5ohRjyAWAJuS3Ak8uaexqi7opSpJ0tiNGhDv67MISdKhZ9Rlrl9LcgJwUlV9OcnRwLx+S5MkjdOot/v+XeCzwLVd0yLg8z3VJEk6BIx6kfoS4GzgURg8PAh4cV9FSZLGb9SAeLKqdu3ZSXIEg99BSJIOU6MGxNeSvBd4Xvcs6s8Af9VfWZKkcRs1IC4DdgD3AP8MWMsMnyQnSXp2GHUV00+B/9K9JElzwKirmL6XZMvU1wjzVifZnqT5TOkMfCTJ5iR3T3nmxMVJHuheF4/+lSRJB8P+3Itpj6OAfwS8aIR51wEfZfqb+r0OOKl7nQX8GXBWkhcxeIb1BIOL4RuSrKmqR0asV5J0gEY6gqiqh4de26rqw8AbRph3O7BzL0MuBK6vgTuAFyY5HngtsK6qdnahsA5YPkqtkqSDY9TbfZ8xtPscBv+z359nSUxnEfDQ0P7Wrm269lZtK4GVAEuXLp1xIcsu+8KM50rS4WjUf+T/89D2buBB4B8f9GpmoKpWAasAJiYm/G2GJB0ko65iOrenz98GLBnaX9y1bQPOmdL+1Z5qkCQ1jHqK6T1766+qD87w89cAlya5kcFF6h9V1Q+T3AL8pyTHdePOBy6f4WdIkmZgf1YxvZLBP+gAbwLuBB7Y26QkNzA4EliQZCuDlUnzAarqGgY/uHs9sBl4HHh717czyfuB9d1bXVVVe7vYLUk6yEYNiMXAGVX1Y4Ak7wO+UFVv3dukqrpoH/3F4EaArb7VwOoR65MkHWSj3mrjJcCuof1dXZsk6TA16hHE9cCdSW7u9t8MfKKXiiRJh4RRVzH9xyRfBH6ta3p7VX2rv7IkSeM26ikmgKOBR6vqj4GtSU7sqSZJ0iFg1Jv1XQn8O3621HQ+8Od9FSVJGr9RjyB+A7gA+AlAVf0AOLavoiRJ4zdqQOzqlqQWQJJj+itJknQoGDUg/jLJtQzutvq7wJfx4UGSdFjb5yqmJAE+DbwMeBR4KXBFVa3ruTZJ0hjtMyCqqpKsrapTGDyXQZI0B4x6iumuJK/stRJJ0iFl1F9SnwW8NcmDDFYyhcHBxSv6KkySNF57DYgkS6vq+wweASpJmkP2dQTxeQZ3cf2bJDdV1W/OQk2SpEPAvq5BZGj7F/ssRJJ0aNlXQNQ025Kkw9y+TjGdmuRRBkcSz+u24WcXqX+u1+okSWOz14CoqnkH8uZJlgN/DMwDPlZVH5jS/yHg3G73aODFVfXCru8p4J6u7/tVdcGB1CJJ2j+jLnPdb0nmAVcD5wFbgfVJ1lTVpj1jqupfDY3/F8DpQ2/xRFWd1ld9kqS925/nQeyvM4HNVbWlqnYBNwIX7mX8RcANPdYjSdoPfQbEIuChof2tXdszJDkBOBH4ylDzUUkmk9yR5M3TfUiSld24yR07dhyEsiVJ0G9A7I8VwGer6qmhthOqagL4J8CHk/xSa2JVraqqiaqaWLhw4WzUKklzQp8BsQ1YMrS/uGtrWcGU00tVta37uwX4Kk+/PiFJ6lmfAbEeOCnJiUmOZBACa6YOSvIy4Djgr4fajkvy3G57AXA2sGnqXElSf3pbxVRVu5NcCtzCYJnr6qq6N8lVwGRV7QmLFcCN3RPr9ng5cG2SnzIIsQ8Mr36SJPWvt4AAqKq1wNopbVdM2X9fY943gFP6rE2StHeHykVqSdIhxoCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKmp14BIsjzJ/Uk2J7ms0f87SXYk2di93jnUd3GSB7rXxX3WKUl6pt4eOZpkHnA1cB6wFVifZE3j2dKfrqpLp8x9EXAlMAEUsKGb+0hf9UqSnq7PI4gzgc1VtaWqdgE3AheOOPe1wLqq2tmFwjpgeU91SpIa+gyIRcBDQ/tbu7apfjPJ3Uk+m2TJfs4lycokk0kmd+zYcTDqliQx/ovUfwUsq6pXMDhK+MT+vkFVraqqiaqaWLhw4UEvUJLmqj4DYhuwZGh/cdf2/1XVw1X1ZLf7MeBXR50rSepXnwGxHjgpyYlJjgRWAGuGByQ5fmj3AuC+bvsW4PwkxyU5Dji/a5MkzZLeVjFV1e4klzL4h30esLqq7k1yFTBZVWuAf5nkAmA3sBP4nW7uziTvZxAyAFdV1c6+apUkPVNvAQFQVWuBtVParhjavhy4fJq5q4HVfdYnSZreuC9SS5IOUQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNvQZEkuVJ7k+yOclljf73JNmU5O4k/z3JCUN9TyXZ2L3WTJ0rSepXb48cTTIPuBo4D9gKrE+ypqo2DQ37FjBRVY8n+T3gD4Hf7vqeqKrT+qpPkrR3fR5BnAlsrqotVbULuBG4cHhAVd1WVY93u3cAi3usR5K0H/oMiEXAQ0P7W7u26bwD+OLQ/lFJJpPckeTN001KsrIbN7ljx44DKliS9DO9nWLaH0neCkwArx5qPqGqtiX5ReArSe6pqv89dW5VrQJWAUxMTNSsFCxJc0CfRxDbgCVD+4u7tqdJ8hrg3wMXVNWTe9qralv3dwvwVeD0HmuVJE3RZ0CsB05KcmKSI4EVwNNWIyU5HbiWQThsH2o/Lslzu+0FwNnA8MVtSVLPejvFVFW7k1wK3ALMA1ZX1b1JrgImq2oN8EfA84HPJAH4flVdALwcuDbJTxmE2AemrH6SJPWs12sQVbUWWDul7Yqh7ddMM+8bwCl91iZJ2jt/SS1JajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlq6jUgkixPcn+SzUkua/Q/N8mnu/5vJlk21Hd5135/ktf2Wack6Zl6C4gk84CrgdcBJwMXJTl5yrB3AI9U1d8BPgT8QTf3ZGAF8MvAcuBPu/eTJM2SPo8gzgQ2V9WWqtoF3AhcOGXMhcAnuu3PAv8wSbr2G6vqyar6HrC5ez9J0iw5osf3XgQ8NLS/FThrujFVtTvJj4Cf79rvmDJ3UetDkqwEVna7jyW5/8BLn1ULgL8ddxGzzO88N/idZ0n+4ICmnzBdR58BMSuqahWwatx1zFSSyaqaGHcds8nvPDf4nZ/9+jzFtA1YMrS/uGtrjklyBPAC4OER50qSetRnQKwHTkpyYpIjGVx0XjNlzBrg4m77t4CvVFV17Su6VU4nAicBd/ZYqyRpit5OMXXXFC4FbgHmAaur6t4kVwGTVbUG+DjwySSbgZ0MQoRu3F8Cm4DdwCVV9VRftY7Zs/b02AHwO88NfudnuQz+wy5J0tP5S2pJUpMBIUlqMiDGJMnqJNuTfGfctcyWJEuS3JZkU5J7k7xr3DX1LclRSe5M8u3uO/+Hcdc0G5LMS/KtJP9t3LXMhiQPJrknycYkk+Ou52DxGsSYJPkHwGPA9VX1K+OuZzYkOR44vqruSnIssAF4c1VtGnNpvenuDHBMVT2WZD7wdeBdVXXHPqY+qyV5DzAB/FxVvXHc9fQtyYPARFUdVj8M9AhiTKrqdgYrt+aMqvphVd3Vbf8YuI9pfiF/uKiBx7rd+d3rsP5fWZLFwBuAj427Fh0YA0Jj0d2593Tgm2MupXfd6ZaNwHZgXVUd7t/5w8C/BX465jpmUwG3JtnQ3f7nsGBAaNYleT5wE/Duqnp03PX0raqeqqrTGNwR4Mwkh+0pxSRvBLZX1YZx1zLLXlVVZzC4e/Ul3SnkZz0DQrOqOw9/E/AXVfW5cdczm6rq/wC3MbiF/eHqbOCC7pz8jcCvJ/nz8ZbUv6ra1v3dDtzMYXL3aQNCs6a7YPtx4L6q+uC465kNSRYmeWG3/TzgPOC7Yy2qR1V1eVUtrqplDO6M8JWqeuuYy+pVkmO6RRckOQY4HzgsVicaEGOS5Abgr4GXJtma5B3jrmkWnA28jcH/Kjd2r9ePu6ieHQ/cluRuBvcnW1dVc2Lp5xzyEuDrSb7N4J5xX6iqL425poPCZa6SpCaPICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUtP/AxsTC17XvPILAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x.plot.hist()" ] }, { "cell_type": "code", "execution_count": 9, "id": "58937096", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD4CAYAAADmWv3KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAAsTAAALEwEAmpwYAAAP8ElEQVR4nO3de5AlZX3G8e/DLgqLIMYdjQHWxURRCm+b8R6vqEFUSKIxUCGJluWm1BhvScQkFaykUhUr8Zoy0fUS70RBsUjwgiYoZUrAWSDKRSIiImDCqFEEDQj+8sc5q7OwM9M7M+8Z5t3vp+oU3ed09/t7d3Yfet7u83aqCklSf/Za7QIkSW0Y8JLUKQNekjplwEtSpwx4SerU+tUuYK6NGzfW5s2bV7sMSVoztm/f/u2qmtrVZ3eogN+8eTMzMzOrXYYkrRlJvjHfZw7RSFKnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE41DfgkL09ycZKLkpycZJ+W7UmSfqZZwCc5CPhDYLqqjgDWAce1ak+StLPWQzTrgX2TrAc2ANc2bk+SNNbsm6xVdU2SvwOuAn4EnFlVZ952uyRbga0AmzZtWnJ7m088Y8n7LseVf/P0VWlXkhbTcojmbsCxwKHALwD7JTnhtttV1baqmq6q6ampXU6nIElagpZDNE8Gvl5Vs1X1Y+CjwKMbtidJmqNlwF8FPDLJhiQBjgQubdieJGmOZgFfVecCpwLnA18et7WtVXuSpJ01nS64qk4CTmrZhiRp1/wmqyR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnqlAEvSZ0y4CWpUy0fun1YkgvnvK5P8rJW7UmSdtbsiU5VdRnwEIAk64BrgNNatSdJ2tmkhmiOBL5WVd+YUHuStMebVMAfB5w8obYkSUwg4JPcCTgGOGWez7cmmUkyMzs727ocSdpjTOIM/mnA+VX1P7v6sKq2VdV0VU1PTU1NoBxJ2jNMIuCPx+EZSZq4pgGfZD/gKcBHW7YjSbq9ZrdJAlTVjcDdW7YhSdo1v8kqSZ0y4CWpUwa8JHXKgJekThnwktQpA16SOmXAS1KnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnWr9yL4Dk5ya5CtJLk3yqJbtSZJ+pukj+4A3AZ+sqmcnuROwoXF7kqSxZgGf5K7A44DnAlTVzcDNrdqTJO2s5RDNocAs8E9JLkjyjiT73XajJFuTzCSZmZ2dbViOJO1ZWgb8emAL8I9V9VDgRuDE225UVduqarqqpqemphqWI0l7lpYBfzVwdVWdO14/lVHgS5ImoFnAV9V/A99Mctj4rSOBS1q1J0naWeu7aF4CfGB8B80VwPMatydJGmsa8FV1ITDdsg1J0q75TVZJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnqVNMnOiW5EvgBcCtwS1X5dCdJmpBBAZ/kgVX15SW28cSq+vYS95UkLdHQIZp/SHJekhcluWvTiiRJK2JQwFfVY4HfBg4Btif5YJKnDNkVODPJ9iRbd7VBkq1JZpLMzM7ODi5ckrSwwRdZq+qrwJ8DrwIeD7w5yVeS/MYCu/1KVW0Bnga8OMnjdnHcbVU1XVXTU1NTu1m+JGk+gwI+yYOSvAG4FHgS8MyqesB4+Q3z7VdV14z/ex1wGvDwZVcsSRpk6Bn83wPnAw+uqhdX1fkAVXUto7P620myX5L9dywDTwUuWn7JkqQhht4m+XTgR1V1K0CSvYB9quqHVfW+efa5J3Bakh3tfLCqPrncgiVJwwwN+M8ATwZuGK9vAM4EHj3fDlV1BfDgZVUnSVqyoUM0+1TVjnBnvLyhTUmSpJUwNOBvTLJlx0qSXwZ+1KYkSdJKGDpE8zLglCTXAgF+HvitVkVJkpZvUMBX1ReT3B84bPzWZVX143ZlSZKWa3cmG3sYsHm8z5YkVNV7m1QlSVq2oZONvQ/4ReBCRjNDwmgaAgNeku6ghp7BTwOHV1W1LEaStHKG3kVzEaMLq5KkNWLoGfxG4JIk5wE37Xizqo5pUpUkadmGBvxrWhYhSVp5Q2+T/FySewP3rarPJNkArGtbmiRpOYZOF/wC4FTgbeO3DgI+1qgmSdIKGHqR9cXAY4Dr4acP/7hHq6IkScs3NOBvqqqbd6wkWc/oPnhJ0h3U0ID/XJI/BfYdP4v1FOBf2pUlSVquoQF/IjALfBn4feDjzPMkJ0nSHcPQu2h+Arx9/JIkrQFD56L5OrsYc6+q+wzYdx0wA1xTVc/Y7QolSUuyO3PR7LAP8JvAzw3c96XApcABu1GXJGmZBo3BV9V35ryuqao3MnoQ94KSHDze7h3LK1OStLuGDtFsmbO6F6Mz+iH7vhH4E2D/BY69FdgKsGnTpiHlSJIGGDpE87o5y7cAVwLPWWiHJM8Arquq7UmeMN92VbUN2AYwPT3tvfWStEKG3kXzxCUc+zHAMUmOZjRuf0CS91fVCUs4liRpNw0donnFQp9X1et38d6rgVeP938C8EeGuyRNzu7cRfMw4PTx+jOB84CvtihKkrR8QwP+YGBLVf0AIMlrgDOGnpFX1WeBzy6hPknSEg2dquCewM1z1m8evydJuoMaegb/XuC8JKeN138NeE+TiiRJK2LoXTR/neQTwGPHbz2vqi5oV5YkabmGDtEAbACur6o3AVcnObRRTZKkFTD0kX0nAa9ifNsjsDfw/lZFSZKWb+gZ/K8DxwA3AlTVtSww/YAkafUNDfibq6oYTxmcZL92JUmSVsLQgP9wkrcBByZ5AfAZfPiHJN2hLXoXTZIAHwLuD1wPHAb8RVV9unFtkqRlWDTgq6qSfLyqHggY6pK0Rgwdojk/ycOaViJJWlFDv8n6COCEJFcyupMmjE7uH9SqMEnS8iwY8Ek2VdVVwK9OqB5J0gpZ7Az+Y4xmkfxGko9U1bMmUJMkaQUsNgafOcv3aVmIJGllLRbwNc+yJOkObrEhmgcnuZ7Rmfy+42X42UXWA5pWJ0lasgUDvqrWLfXASfYBzgbuPG7n1Ko6aanHkyTtnqG3SS7FTcCTquqGJHsDn0/yiao6p2GbkqSxZgE/npzshvHq3uOX4/iSNCEtz+BJsg7YDvwS8JaqOncX22wFtgJs2rSpZTmStKDNJ56xKu1e+TdPb3Lc3Xmi026rqlur6iHAwcDDkxyxi222VdV0VU1PTU21LEeS9ihNA36HqvoecBZw1CTakyQ1DPgkU0kOHC/vCzwF+Eqr9iRJO2s5Bn8v4D3jcfi9gA9X1b82bE+SNEfLu2i+BDy01fElSQubyBi8JGnyDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqdaPpP1kCRnJbkkycVJXtqqLUnS7bV8JustwCur6vwk+wPbk3y6qi5p2KYkaazZGXxVfauqzh8v/wC4FDioVXuSpJ1NZAw+yWZGD+A+dxefbU0yk2RmdnZ2EuVI0h6hecAnuQvwEeBlVXX9bT+vqm1VNV1V01NTU63LkaQ9RtOAT7I3o3D/QFV9tGVbkqSdtbyLJsA7gUur6vWt2pEk7VrLM/jHAL8DPCnJhePX0Q3bkyTN0ew2yar6PJBWx5ckLcxvskpSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqcMeEnqlAEvSZ0y4CWpUwa8JHXKgJekThnwktQpA16SOmXAS1KnWj6T9V1JrktyUas2JEnza3kG/27gqIbHlyQtoFnAV9XZwHdbHV+StLBVH4NPsjXJTJKZ2dnZ1S5Hkrqx6gFfVduqarqqpqempla7HEnqxqoHvCSpDQNekjrV8jbJk4EvAIcluTrJ81u1JUm6vfWtDlxVx7c6tiRpcQ7RSFKnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE4Z8JLUKQNekjplwEtSpwx4SeqUAS9JnTLgJalTBrwkdcqAl6ROGfCS1CkDXpI6ZcBLUqeaBnySo5JcluTyJCe2bEuStLOWz2RdB7wFeBpwOHB8ksNbtSdJ2lnLM/iHA5dX1RVVdTPwz8CxDduTJM3R7KHbwEHAN+esXw084rYbJdkKbB2v3pDksiW2txH49hL3XbK8dtIt7mRV+rzK9rQ+72n9hT2wz3ntsvp87/k+aBnwg1TVNmDbco+TZKaqplegpDXDPvdvT+sv2OeV1HKI5hrgkDnrB4/fkyRNQMuA/yJw3ySHJrkTcBxwesP2JElzNBuiqapbkvwB8ClgHfCuqrq4VXuswDDPGmSf+7en9Rfs84pJVbU4riRplflNVknqlAEvSZ1acwG/2PQHSe6c5EPjz89NsnkVylwxA/r7iiSXJPlSkn9LMu89sWvF0CkukjwrSSVZ87fUDelzkueMf9YXJ/ngpGtcaQP+bm9KclaSC8Z/v49ejTpXSpJ3JbkuyUXzfJ4kbx7/eXwpyZZlN1pVa+bF6GLt14D7AHcC/hM4/DbbvAh463j5OOBDq1134/4+EdgwXn7hWu7v0D6Pt9sfOBs4B5he7bon8HO+L3ABcLfx+j1Wu+4J9Hkb8MLx8uHAlatd9zL7/DhgC3DRPJ8fDXwCCPBI4NzltrnWzuCHTH9wLPCe8fKpwJFJMsEaV9Ki/a2qs6rqh+PVcxh932AtGzrFxV8BrwX+b5LFNTKkzy8A3lJV/wtQVddNuMaVNqTPBRwwXr4rcO0E61txVXU28N0FNjkWeG+NnAMcmORey2lzrQX8rqY/OGi+barqFuD7wN0nUt3KG9LfuZ7P6AxgLVu0z+NfXQ+pqjMmWVhDQ37O9wPul+Q/kpyT5KiJVdfGkD6/BjghydXAx4GXTKa0VbO7/94XtepTFWhlJDkBmAYev9q1tJRkL+D1wHNXuZRJW89omOYJjH5LOzvJA6vqe6tZVGPHA++uqtcleRTwviRHVNVPVruwtWKtncEPmf7gp9skWc/oV7vvTKS6lTdouockTwb+DDimqm6aUG2tLNbn/YEjgM8muZLRWOXpa/xC65Cf89XA6VX146r6OvBfjAJ/rRrS5+cDHwaoqi8A+zCaiKxXKz69y1oL+CHTH5wO/N54+dnAv9f4CsYatGh/kzwUeBujcF/r47KwSJ+r6vtVtbGqNlfVZkbXHY6pqpnVKXdFDPl7/TFGZ+8k2choyOaKCda40ob0+SrgSIAkD2AU8LMTrXKyTgd+d3w3zSOB71fVt5ZzwDU1RFPzTH+Q5C+Bmao6HXgno1/lLmd0QeO41at4eQb292+BuwCnjK8lX1VVx6xa0cs0sM9dGdjnTwFPTXIJcCvwx1W1Vn8zHdrnVwJvT/JyRhdcn7uGT9ZIcjKj/0lvHF9XOAnYG6Cq3sroOsPRwOXAD4HnLbvNNfznJUlawFobopEkDWTAS1KnDHhJ6pQBL0mdMuAlqVMGvCR1yoCXpE79P4MdIsaFADguAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "y.plot.hist()" ] }, { "cell_type": "code", "execution_count": 10, "id": "e60c7e5d", "metadata": {}, "outputs": [], "source": [ "lr = LogisticRegression()" ] }, { "cell_type": "code", "execution_count": 11, "id": "25e91dff", "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Expected 2D array, got 1D array instead:\narray=[0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Input \u001b[0;32mIn [11]\u001b[0m, in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mlr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.pyenv/versions/3.10.1/lib/python3.10/site-packages/sklearn/linear_model/_logistic.py:1508\u001b[0m, in \u001b[0;36mLogisticRegression.fit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 1505\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1506\u001b[0m _dtype \u001b[38;5;241m=\u001b[39m [np\u001b[38;5;241m.\u001b[39mfloat64, np\u001b[38;5;241m.\u001b[39mfloat32]\n\u001b[0;32m-> 1508\u001b[0m X, y \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_validate_data\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1509\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1510\u001b[0m \u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1511\u001b[0m \u001b[43m \u001b[49m\u001b[43maccept_sparse\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcsr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1512\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_dtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1513\u001b[0m \u001b[43m \u001b[49m\u001b[43morder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mC\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1514\u001b[0m \u001b[43m \u001b[49m\u001b[43maccept_large_sparse\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msolver\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mliblinear\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msag\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msaga\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1515\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1516\u001b[0m check_classification_targets(y)\n\u001b[1;32m 1517\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclasses_ \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39munique(y)\n", "File \u001b[0;32m~/.pyenv/versions/3.10.1/lib/python3.10/site-packages/sklearn/base.py:581\u001b[0m, in \u001b[0;36mBaseEstimator._validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 579\u001b[0m y \u001b[38;5;241m=\u001b[39m check_array(y, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mcheck_y_params)\n\u001b[1;32m 580\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 581\u001b[0m X, y \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_X_y\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mcheck_params\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 582\u001b[0m out \u001b[38;5;241m=\u001b[39m X, y\n\u001b[1;32m 584\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m no_val_X \u001b[38;5;129;01mand\u001b[39;00m check_params\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mensure_2d\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mTrue\u001b[39;00m):\n", "File \u001b[0;32m~/.pyenv/versions/3.10.1/lib/python3.10/site-packages/sklearn/utils/validation.py:964\u001b[0m, in \u001b[0;36mcheck_X_y\u001b[0;34m(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)\u001b[0m\n\u001b[1;32m 961\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m y \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 962\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124my cannot be None\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 964\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_array\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 965\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 966\u001b[0m \u001b[43m \u001b[49m\u001b[43maccept_sparse\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maccept_sparse\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 967\u001b[0m \u001b[43m \u001b[49m\u001b[43maccept_large_sparse\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maccept_large_sparse\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 968\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 969\u001b[0m \u001b[43m \u001b[49m\u001b[43morder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43morder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 970\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 971\u001b[0m \u001b[43m \u001b[49m\u001b[43mforce_all_finite\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_all_finite\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 972\u001b[0m \u001b[43m \u001b[49m\u001b[43mensure_2d\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mensure_2d\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 973\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_nd\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_nd\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 974\u001b[0m \u001b[43m \u001b[49m\u001b[43mensure_min_samples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mensure_min_samples\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 975\u001b[0m \u001b[43m \u001b[49m\u001b[43mensure_min_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mensure_min_features\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 976\u001b[0m \u001b[43m \u001b[49m\u001b[43mestimator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mestimator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 977\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 979\u001b[0m y \u001b[38;5;241m=\u001b[39m _check_y(y, multi_output\u001b[38;5;241m=\u001b[39mmulti_output, y_numeric\u001b[38;5;241m=\u001b[39my_numeric)\n\u001b[1;32m 981\u001b[0m check_consistent_length(X, y)\n", "File \u001b[0;32m~/.pyenv/versions/3.10.1/lib/python3.10/site-packages/sklearn/utils/validation.py:769\u001b[0m, in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)\u001b[0m\n\u001b[1;32m 767\u001b[0m \u001b[38;5;66;03m# If input is 1D raise error\u001b[39;00m\n\u001b[1;32m 768\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m array\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m--> 769\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 770\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpected 2D array, got 1D array instead:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124marray=\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 771\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReshape your data either using array.reshape(-1, 1) if \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 772\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124myour data has a single feature or array.reshape(1, -1) \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 773\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mif it contains a single sample.\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(array)\n\u001b[1;32m 774\u001b[0m )\n\u001b[1;32m 776\u001b[0m \u001b[38;5;66;03m# make sure we actually converted to numeric:\u001b[39;00m\n\u001b[1;32m 777\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype_numeric \u001b[38;5;129;01mand\u001b[39;00m array\u001b[38;5;241m.\u001b[39mdtype\u001b[38;5;241m.\u001b[39mkind \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOUSV\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", "\u001b[0;31mValueError\u001b[0m: Expected 2D array, got 1D array instead:\narray=[0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample." ] } ], "source": [ "lr.fit(x,y)" ] }, { "cell_type": "code", "execution_count": 12, "id": "271c6c55", "metadata": {}, "outputs": [], "source": [ "x = x.values.reshape(-1, 1)" ] }, { "cell_type": "code", "execution_count": 13, "id": "114d6d85", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LogisticRegression()" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lr.fit(x, y)" ] }, { "cell_type": "code", "execution_count": 14, "id": "1fde05fc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[6.14262681e-04, 9.99385737e-01]])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lr.predict_proba([[12]])" ] }, { "cell_type": "code", "execution_count": 15, "id": "606bf31b", "metadata": {}, "outputs": [], "source": [ "hours = np.arange(0, 30, 0.5)" ] }, { "cell_type": "code", "execution_count": 16, "id": "7528991d", "metadata": {}, "outputs": [], "source": [ "probabilites = []\n", "for h in hours:\n", " p_fail, p_success = lr.predict_proba([[h]])[0]\n", " probabilites.append(p_success)" ] }, { "cell_type": "code", "execution_count": 17, "id": "3042ff20", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAAsTAAALEwEAmpwYAAATV0lEQVR4nO3dYYxcV3mH8efNZgNLoCzUFiUbL3bb1NQkCNNVIhREU6A4iSrHDZTGEhKpEO6HBoGorNptlaSpqgRcUJGaQo1ABQRxU3Bdq7hdUBPUFpU0Ng6YJF3qpkC8SZMAcdooC1k7bz/MrBmPZ70zu7M7c888PynyzJ3jue/19f5zfe6550RmIkmqvnN6XYAkqTsMdEkqhIEuSYUw0CWpEAa6JBXi3F7teNWqVbl27dpe7V6SKunQoUPfz8zVrT7rWaCvXbuWgwcP9mr3klRJEfHd+T6zy0WSCmGgS1IhDHRJKoSBLkmFMNAlqRALjnKJiE8CvwY8npkXt/g8gI8AVwPPANdn5te7XajKtu/wNLsmp3jk+AwXjI6wfdN6gEVv27JxrOvfWYV991s9g7rvTurZsnGs3R+TBcVCsy1GxBuAp4FPzxPoVwPvoRbolwEfyczLFtrxxMREOmyxHPP9RW3nB+pXXrmaLxyaZmb25KnvGz4nIGD2ZHa8bWR4iLf+0lhXv7MK++63egZ1353UMzI8xK3XXtJRqEfEocycaPlZO9PnRsRa4O/nCfS/BL6SmXfU308BV2Tmo2f7TgO9uppDulUgd/IDFUC3J3EeiuBkj6aG7uW+WxnUP4uqnIex0RG+uuONbX/P2QK9Gw8WjQEPN7w/Vt92RqBHxDZgG8D4+HgXdq3ltlB4Tx+f4bNf+94ZgTwze5I77nn4jL/As8+d+Rd6OX7kevmD3E8hAoP7Z1GV8/DI8Zmu7WNFnxTNzN3Abqhdoa/kvrWwxYb3fCeylz9QXhn+xKD+WVTlPFwwOtK1fXRjlMs0sKbh/YX1baqQfYen2bn3CNPHZ0h+Et6N3SXQ2dX0UETbbZtbDp8TDA/ForaNDA+x9bI1jAwPde07q7DvfqtnUPfdST0jw0On7it1Qzeu0PcDN0TEHmo3RZ9aqP9cvdd8Nf7MsyeWFN7N/eCd9KHPtb37P57o6oiCiVe8tGejGXq1736rZ1D33Uk9Kz3K5Q7gCmAV8BhwEzAMkJkfqw9b/HPgSmrDFn8rMxe82+lN0d6ZuxpvDvB2zRfezYHcybCxbv6llkq25FEuy8FA753Lb7uL6TZvxHQS3pKW33KPclHFtHtX3fCWqsVAHwDN3R6jLxjmyWdmz2g3OjLM+c871/CWKspAL1xzf/n08ZlTd+Gbb0zevPlVBrhUYU7OVbhdk1Nn3PycfS45/7xzGRsdIag9qdbp48eS+o9X6IWbr7/8qZlZ7rvpLStcjaTl5BV64eZ7Cq2bT6dJ6g8GeuG2b1q/7E+nSeoPBnph9h2e5vLb7mLdji9y+W13AXDrtZfYXy4NAPvQC9JqRMvOvUe49dpLOpqeU1I1eYVekFYjWmZmT7JrcqpHFUlaSQZ6QeYb0dLN+ZYl9S8DvSCOaJEGm4FeEEe0SIPNm6IFmRu54tS00mAy0AuzZeOYAS4NKLtcJKkQXqFXVKuVgLwylwabgV5B8z1ABBjq0gCzy6WCfIBIUisGegX5AJGkVgz0CvIBIkmtGOgV5ANEklrxpmgF+QCRpFYM9IryASJJzexykaRCGOiSVAgDXZIKYaBLUiG8KVoBztsiqR0Gep9z3hZJ7bLLpc85b4ukdrUV6BFxZURMRcTRiNjR4vPxiLg7Ig5HxDcj4urulzqYnLdFUrsWDPSIGAJuB64CNgBbI2JDU7M/BO7MzI3AdcBfdLvQQeW8LZLa1c4V+qXA0cx8KDOfBfYA1zS1SeCn6q9fDDzSvRIHm/O2SGpXOzdFx4CHG94fAy5ranMz8KWIeA9wPvDmVl8UEduAbQDj4+Od1jqQnLdFUru6NcplK/BXmfmhiHgd8JmIuDgzn2tslJm7gd0AExMT2aV9F895WyS1o50ul2lgTcP7C+vbGr0LuBMgM/8NeD6wqhsFSpLa006g3wtcFBHrIuI8ajc99ze1+R7wJoCI+EVqgf5ENwuVJJ3dgoGemSeAG4BJ4EFqo1nuj4hbImJzvdnvAu+OiG8AdwDXZ6ZdKpK0gtrqQ8/MA8CBpm03Nrx+ALi8u6VJkjrhk6KSVAgDXZIKYaBLUiEMdEkqhIEuSYVwPvQ+42IWkhbLQO8jLmYhaSnscukjLmYhaSkM9D7iYhaSlsJA7yMuZiFpKQz0PuJiFpKWwpuifcTFLCQthYHeZ1zMQtJi2eUiSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgrh9Lk9tO/wtHOfS+oaA71H9h2eZufeI6cWhZ4+PsPOvUcADHVJi2KXS4/smpw6FeZzZmZPsmtyqkcVSao6A71HHjk+09F2SVpIW4EeEVdGxFREHI2IHfO0eXtEPBAR90fE57pbZnkuGB3paLskLWTBQI+IIeB24CpgA7A1IjY0tbkI2AlcnpmvAt7X/VLLsn3TekaGh07bNjI8xPZN63tUkaSqa+em6KXA0cx8CCAi9gDXAA80tHk3cHtmPgmQmY93u9DSzN34dJSLpG5pJ9DHgIcb3h8DLmtq8wsAEfFVYAi4OTP/sfmLImIbsA1gfHx8MfUWZcvGMQNcUtd066boucBFwBXAVuDjETHa3Cgzd2fmRGZOrF69uku7liRBe4E+DaxpeH9hfVujY8D+zJzNzP8Gvk0t4CVJK6SdQL8XuCgi1kXEecB1wP6mNvuoXZ0TEauodcE81L0yJUkLWTDQM/MEcAMwCTwI3JmZ90fELRGxud5sEvhBRDwA3A1sz8wfLFfRkqQzRWb2ZMcTExN58ODBnuxbkqoqIg5l5kSrz3xSVJIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKkQ7C1yoC/YdnnZ1IknLykBfAfsOT7Nz7xFmZk8CMH18hp17jwAY6pK6xi6XFbBrcupUmM+ZmT3JrsmpHlUkqUQG+gp45PhMR9slaTEM9BVwwehIR9slaTEM9BWwfdN6RoaHTts2MjzE9k3re1SRpBJ5U3QFzN34dJSLpOVkoK+QLRvHDHBJy8ouF0kqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVoq1Aj4grI2IqIo5GxI6ztHtrRGRETHSvRElSOxYM9IgYAm4HrgI2AFsjYkOLdi8C3gvc0+0iJUkLa+cK/VLgaGY+lJnPAnuAa1q0+2PgA8CPulifJKlN7QT6GPBww/tj9W2nRMRrgTWZ+cWzfVFEbIuIgxFx8Iknnui4WEnS/Ja8wEVEnAN8GLh+obaZuRvYDTAxMZFL3Xe/2nd42tWJJK24dgJ9GljT8P7C+rY5LwIuBr4SEQA/A+yPiM2ZebBbhVbFvsPT7Nx7hJnZkwBMH59h594jAIa6pGXVTpfLvcBFEbEuIs4DrgP2z32YmU9l5qrMXJuZa4GvAQMZ5lBbN3QuzOfMzJ5k1+RUjyqSNCgWDPTMPAHcAEwCDwJ3Zub9EXFLRGxe7gKr5pHjMx1tl6RuaasPPTMPAAeatt04T9srll5WdV0wOsJ0i/C+YHSkB9VIGiQ+Kdpl2zetZ2R46LRtI8NDbN+0vkcVSRoUSx7lotPN3fh0lIuklWagL4MtG8cMcEkrzi4XSSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIp89dgn2Hp533XFLfMNAXad/haXbuPXJqQejp4zPs3HsEwFCX1BN2uSzSrsmpU2E+Z2b2JLsmp3pUkaRBZ6Av0iMtFoI+23ZJWm4G+iJdMDrS0XZJWm4G+iJt37SekeGh07aNDA+xfdP6HlUkadB5U3SR5m58OspFUr8w0Jdgy8YxA1xS37DLRZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBWirUCPiCsjYioijkbEjhafvz8iHoiIb0bEP0XEK7pfqiTpbBYM9IgYAm4HrgI2AFsjYkNTs8PARGa+Gvg88MFuFypJOrt2rtAvBY5m5kOZ+SywB7imsUFm3p2Zz9Tffg24sLtlSpIW0s6TomPAww3vjwGXnaX9u4B/aPVBRGwDtgGMj4+3WWJ/cDELSf2uq4/+R8Q7gAngl1t9npm7gd0AExMT2c19LycXs5BUBe10uUwDaxreX1jfdpqIeDPwB8DmzPxxd8rrDy5mIakK2gn0e4GLImJdRJwHXAfsb2wQERuBv6QW5o93v8zecjELSVWwYKBn5gngBmASeBC4MzPvj4hbImJzvdku4IXA30TEfRGxf56vqyQXs5BUBW31oWfmAeBA07YbG16/uct19ZXtm9af1ocOLmYhqf84H3obXMxCUhUY6G1yMQtJ/c65XCSpEAa6JBXCQJekQhjoklQIA12SCuEolxaciEtSFRnoTZyIS1JV2eXSxIm4JFWVgd7EibgkVZWB3sSJuCRVlYHeZPum9YwMD522zYm4JFWBN0WbOBGXpKoy0FtwIi5JVTTwge6Yc0mlGOhAd8y5pJIM9E1Rx5xLKslAB7pjziWVZKAD3THnkkoy0IHumHNJJRmoQN93eJrLb7uLdTu+yOW33QXArddewtjoCAGMjY5w67WXeENUUiUNzCiX+Ua03HrtJXx1xxt7XJ0kLd3AXKE7okVS6QYm0B3RIql0xXa5ND8BOvqCYZ58ZvaMdo5okVSKIgO9VX/58DnB8FAwezJPtXNEi6SSVD7QW83F0qq/fPa5ZHRkmPOfd67ztkgqUqUDfb6RK81hPuepmVnuu+ktK1miJK2YSgV689X4M8+eaDlyZSiCk5ln/H77yyWVrDKB3upqfD4nMxkZHjot7O0vl1S6toYtRsSVETEVEUcjYkeLz58XEX9d//yeiFjb7UJb9YvPZ+6JT58AlTRIFrxCj4gh4HbgV4FjwL0RsT8zH2ho9i7gycz8+Yi4DvgA8JvdLLTd8eJzV+KuOiRp0LRzhX4pcDQzH8rMZ4E9wDVNba4BPlV//XngTRER3Stz/v7v0ZFhr8Qlifb60MeAhxveHwMum69NZp6IiKeAnwa+39goIrYB2wDGx8c7KnT7pvVnjGAZGR7i5s2vMsAliRV+9D8zd2fmRGZOrF69uqPfu2XjmP3iknQW7VyhTwNrGt5fWN/Wqs2xiDgXeDHwg65U2MB+cUmaXztX6PcCF0XEuog4D7gO2N/UZj/wzvrrtwF3ZbYYCC5JWjYLXqHX+8RvACaBIeCTmXl/RNwCHMzM/cAngM9ExFHgh9RCX5K0gtp6sCgzDwAHmrbd2PD6R8BvdLc0SVInBmY+dEkqnYEuSYWIXt27jIgngO8u8revommMe8WVdDwlHQt4PP2spGOB9o/nFZnZctx3zwJ9KSLiYGZO9LqObinpeEo6FvB4+llJxwLdOR67XCSpEAa6JBWiqoG+u9cFdFlJx1PSsYDH089KOhbowvFUsg9dknSmql6hS5KaGOiSVIjKBfpCy+FVTUR8JyKORMR9EXGw1/V0IiI+GRGPR8S3Gra9NCK+HBH/Wf/1Jb2ssRPzHM/NETFdPz/3RcTVvayxXRGxJiLujogHIuL+iHhvfXslz89Zjqdy5ycinh8R/x4R36gfyx/Vt6+rL+F5tL6k53kdf3eV+tDry+F9m4bl8ICtTcvhVUpEfAeYyMzKPSAREW8AngY+nZkX17d9EPhhZt5W/x/uSzLz93pZZ7vmOZ6bgacz8097WVunIuLlwMsz8+sR8SLgELAFuJ4Knp+zHM/bqdj5qa/mdn5mPh0Rw8C/Au8F3g/szcw9EfEx4BuZ+dFOvrtqV+jtLIenFZKZ/0xtds1GjcsRforaD10lzHM8lZSZj2bm1+uv/w94kNrKYpU8P2c5nsrJmqfrb4fr/yXwRmpLeMIiz03VAr3VcniVPKkNEvhSRByqL9FXdS/LzEfrr/8HeFkvi+mSGyLim/UumUp0UTSKiLXARuAeCjg/TccDFTw/ETEUEfcBjwNfBv4LOJ6ZJ+pNFpVtVQv0Er0+M18LXAX8Tv2f/UWoL3JSnT691j4K/BzwGuBR4EM9raZDEfFC4AvA+zLzfxs/q+L5aXE8lTw/mXkyM19DbQW4S4FXduN7qxbo7SyHVymZOV3/9XHgb6md3Cp7rN7fOdfv+XiP61mSzHys/sP3HPBxKnR+6v2zXwA+m5l765sre35aHU+Vzw9AZh4H7gZeB4zWl/CERWZb1QK9neXwKiMizq/f4CEizgfeAnzr7L+r7zUuR/hO4O96WMuSzYVf3a9TkfNTv/H2CeDBzPxww0eVPD/zHU8Vz09ErI6I0frrEWqDPB6kFuxvqzdb1Lmp1CgXgPqwpD/jJ8vh/UlvK1q8iPhZalflUFs96nNVOp6IuAO4gtq0n48BNwH7gDuBcWrTI789Mytxo3Ge47mC2j/nE/gO8NsNfdB9KyJeD/wLcAR4rr7596n1O1fu/JzleLZSsfMTEa+mdtNziNpF9Z2ZeUs9D/YALwUOA+/IzB939N1VC3RJUmtV63KRJM3DQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmF+H+nPUBUjH7D+wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(hours, probabilites)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.1" } }, "nbformat": 4, "nbformat_minor": 5 }