{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "a8df07b6", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import pandas as pd\n", "import numpy as np\n", "# pip install scikit-learn\n", "from sklearn.linear_model import LogisticRegression" ] }, { "cell_type": "code", "execution_count": 2, "id": "091a03ef", "metadata": {}, "outputs": [], "source": [ "hours = np.arange(0.5, 6, 0.5)" ] }, { "cell_type": "code", "execution_count": 3, "id": "1bac76da", "metadata": {}, "outputs": [], "source": [ "outcome = np.array([0,0,0,0,0,0,1,0,0,1,1,1,1,1,1])" ] }, { "cell_type": "code", "execution_count": 4, "id": "27ff8e1f", "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame.from_records(zip(hours, outcome), columns=['hours', 'outcome'])" ] }, { "cell_type": "code", "execution_count": 5, "id": "124b3554", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | hours | \n", "outcome | \n", "
---|---|---|
0 | \n", "0.5 | \n", "0 | \n", "
1 | \n", "1.0 | \n", "0 | \n", "
2 | \n", "1.5 | \n", "0 | \n", "
3 | \n", "2.0 | \n", "0 | \n", "
4 | \n", "2.5 | \n", "0 | \n", "
5 | \n", "3.0 | \n", "0 | \n", "
6 | \n", "3.5 | \n", "1 | \n", "
7 | \n", "4.0 | \n", "0 | \n", "
8 | \n", "4.5 | \n", "0 | \n", "
9 | \n", "5.0 | \n", "1 | \n", "
10 | \n", "5.5 | \n", "1 | \n", "