
DEEP LEARNING

part I: perceptron

marco milanesio

neural networks

● recognize patterns

● human brain

source:wikipedia

artificial neural networks

● ANN represents connections

● between inputs and outputs

● each connection has a weight

● learning == adjusting these weights

● to predict the correct output

● applications:

– classification

– anomaly detection

– speech/audio recognition

– images

– time series analysis

– ...

general structure

i1

i2

i3

i4

h1

h2

h3

o1

o2

input layer hidden layer output layer

perceptron

● ANN without hidden layers

● only input and output

● applications:

– decision making

– logic gates

– ...

i1

i2

i3

i4

o1

o2

how does it work?

● 2 steps

● Given:

– a set of input

– a set of weights (random!!!)

● Feed-forward

– compute output according to weights

• Back-propagation

– calculate error between predicted and
target

– gradient descent to update the weights

example

● consider the following perceptron

x1

x2

x3

x4

o1

w1

w2

w3

w4

data target

0 0

1 2

2 4

3 6
output

output = w1x1 + w2x2+ w3x3 + w4x4 + b

example

● b = 0 for simplicity

data target output

wi = 3

error

0 0 0 0

1 2 3 1

2 4 6 2

3 6 9 3

output = w1x1 + w2x2+ w3x3 + w4x4

example

● errors in 3 out of 4 prediction

– increase or decrease the weights

data target output

wi = 4

error

0 0 0 0

1 2 4 2

2 4 8 4

3 6 12 6

output = w1x1 + w2x2+ w3x3 + w4x4

example

● errors in 3 out of 4 prediction

– increase or decrease the weights

data target output

wi = 2

error

0 0 0 0

1 2 2 0

2 4 4 0

3 6 6 0

output = w1x1 + w2x2+ w3x3 + w4x4

example

● Error minimized

● Global minimum

data target output

wi = 2

error

0 0 0 0

1 2 2 0

2 4 4 0

3 6 6 0

output = w1x1 + w2x2+ w3x3 + w4x4

example

example

● Get the weights so that the error
becomes minimum

● Once we figure out if we have to
decrease or increase the weights we
proceed in the chosen direction

● STOP if error increases again

● GRADIENT DESCENT

sigmoid function

• activation function in a ANN

ANN from scratch

● Implementation of a ANN

● From scratch

● Pure python

● ANN  OR GATE

OR GATE
X1 X2 Out

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

b=1

o1w1

w2

w3

out

Bias = 1 to make the network more
robust. Will be clear at the end.

Trust me for now.

OR GATE

● init the weights at random

● calculate input and output (and error)

x1 = 0

x2 = 1

b=1

o1w1 = 0.2

w2 = 0.3

w3 = 0.5

out

Input for o1 = w1x1 + w2x2 + w3b = 0.8

out = sigmoid(o1) = 1 / (1 + e-o1) = 0.68997

MSE = SUM(1/2 * (target – output)2) = 0.0480593

OR GATE

● Have to compute this for all inputs

● Compute global MSE

● Then, update the weights to minimize the
error

●  GRADIENT DESCENT

Gradient descent

● iterative algorithm

● find optimal values for its parameters

● inputs = parameters + learning rate (lr)

● Loop:

●start with initial values

●calculate costs

●update values using an update function

●return min costs for cost function

● X = X – lr * f’(X)

● where f’(X) = d/dX f(X)

Gradient descent

● Need to find the derivatives…

● Let’s switch to the notebook

● [LIVE CODING]

OR GATE

● pretty good!

OR GATE

● Why bias?

● Suppose we have input (0,0)

● The sum of the products will always be 0

● INDEPENDENTLY of the weights

● Then the result will always be 0

● INDEPENDENTLY of how long we train

● Bias affect the shape of the sigmoid
function (Live coding)

THE END

● For now.

● Next time: pytorch

