
DEEP LEARNING
part I: perceptron

marco milanesio

neural networks

● recognize patterns
● human brain

source:wikipedia

artificial neural networks

● ANN represents connections
● between inputs and outputs
● each connection has a weight
● learning == adjusting these weights
● to predict the correct output
● applications:
– classification
– anomaly detection
– speech/audio recognition
– images
– time series analysis
– ...

general structure

i1

i2

i3

i4

h1

h2

h3

o1

o2

input layer hidden layer output layer

perceptron

● ANN without hidden layers
● only input and output
● applications:
– decision making
– logic gates
– ...

i1

i2

i3

i4

o1

o2

how does it work?

● 2 steps
● Given:
– a set of input
– a set of weights (random!!!)

● Feed-forward
– compute output according to weights

• Back-propagation
– calculate error between predicted and
target

– gradient descent to update the weights

example

● consider the following perceptron

x1

x2

x3

x4

o1

w1

w2

w3

w4

data target

0 0

1 2

2 4

3 6
output

output = w1x1 + w2x2+ w3x3 + w4x4 + b

example

● b = 0 for simplicity

data target output
wi = 3

error

0 0 0 0

1 2 3 1

2 4 6 2

3 6 9 3

output = w1x1 + w2x2+ w3x3 + w4x4

example

● errors in 3 out of 4 prediction
– increase or decrease the weights

data target output
wi = 4

error

0 0 0 0

1 2 4 2

2 4 8 4

3 6 12 6

output = w1x1 + w2x2+ w3x3 + w4x4

example

● errors in 3 out of 4 prediction
– increase or decrease the weights

data target output
wi = 2

error

0 0 0 0

1 2 2 0

2 4 4 0

3 6 6 0

output = w1x1 + w2x2+ w3x3 + w4x4

example

● Error minimized
● Global minimum

data target output
wi = 2

error

0 0 0 0

1 2 2 0

2 4 4 0

3 6 6 0

output = w1x1 + w2x2+ w3x3 + w4x4

example

example

● Get the weights so that the error
becomes minimum

● Once we figure out if we have to
decrease or increase the weights we
proceed in the chosen direction

● STOP if error increases again
● GRADIENT DESCENT

sigmoid function

• activation function in a ANN

ANN from scratch

● Implementation of a ANN
● From scratch
● Pure python
● ANN OR GATE

OR GATE
X1 X2 Out

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

b=1

o1w1

w2

w3

out

Bias = 1 to make the network more
robust. Will be clear at the end.
Trust me for now.

OR GATE

● init the weights at random
● calculate input and output (and error)

x1 = 0

x2 = 1

b=1

o1w1 = 0.2

w2 = 0.3

w3 = 0.5

out

Input for o1 = w1x1 + w2x2 + w3b = 0.8

out = sigmoid(o1) = 1 / (1 + e-o1) = 0.68997

MSE = SUM(1/2 * (target – output)2) = 0.0480593

OR GATE

● Have to compute this for all inputs
● Compute global MSE
● Then, update the weights to minimize the
error

● GRADIENT DESCENT

Gradient descent

● iterative algorithm
● find optimal values for its parameters
● inputs = parameters + learning rate (lr)

● Loop:
●start with initial values
●calculate costs
●update values using an update function
●return min costs for cost function

● X = X – lr * f’(X)
● where f’(X) = d/dX f(X)

Gradient descent

● Need to find the derivatives…
● Let’s switch to the notebook

● [LIVE CODING]

OR GATE

● pretty good!

OR GATE

● Why bias?
● Suppose we have input (0,0)
● The sum of the products will always be 0
● INDEPENDENTLY of the weights
● Then the result will always be 0
● INDEPENDENTLY of how long we train
● Bias affect the shape of the sigmoid
function (Live coding)

THE END

● For now.
● Next time: pytorch

