

marco milanesio

DEEP LEARNING part I: perceptron

neural networks

- recognize patterns
- human brain

artificial neural networks

- ANN represents connections
- between inputs and outputs
- each connection has a weight
- learning == adjusting these weights
- to predict the correct output
- applications:
 - classification
 - anomaly detection
 - speech/audio recognition
 - images
 - -time series analysis
 - • •

general structure

perceptron

- ANN without hidden layers
- only input and output
- applications:
 - decision making
 - -logic gates

- • • •

how does it work?

- 2 steps
- Given:
 - a set of input
 - a set of weights (random!!!)
- Feed-forward
- compute output according to weights
- Back-propagation
 - calculate error between predicted and target
 - -gradient descent to update the weights

• consider the following perceptron

• b = 0 for simplicity

data	target	output w _i = 3	error
0	0	0	0
1	2	3	1
2	4	6	2
3	6	9	3

output =
$$w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

errors in 3 out of 4 prediction
 <u>increase</u> or decrease the weights

data	target	output w _i = 4	error
0	0	0	0
1	2	4	2
2	4	8	4
3	6	12	6

output =
$$w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

errors in 3 out of 4 prediction
 increase or <u>decrease</u> the weights

data	target	output w _i = 2	error
0	0	0	0
1	2	2	0
2	4	4	0
3	6	6	0

output = $w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$

- Error minimized
- Global minimum

data	target	output w _i = 2	error
0	0	0	0
1	2	2	0
2	4	4	0
3	6	6	0

output =
$$w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

- Get the weights so that the error becomes minimum
- Once we figure out if we have to decrease or increase the weights we proceed in the chosen direction
- **STOP** if error increases again
- GRADIENT DESCENT

sigmoid function

• activation function in a ANN

ANN from scratch

- Implementation of a ANN
- From scratch
- Pure python
- ANN \rightarrow or gate

X1	X2	Out
0	0	0
0	1	1
1	0	1
1	1	1

Bias = 1 to make the network more robust. Will be clear at the end. Trust me for now.

- init the weights at random
- calculate input and output (and error)

Input for o1 = w1x1 + w2x2 + w3b = 0.8 out = sigmoid(o1) = 1 / (1 + e^{-01}) = 0.68997 MSE = SUM(1/2 * (target - output)²) = 0.0480593

- Have to compute this for all inputs
- Compute global MSE
- Then, update the weights to minimize the error
- \rightarrow **GRADIENT DESCENT**

Gradient descent

- iterative algorithm
- find optimal values for its parameters
- inputs = parameters + learning rate (lr)
- Loop:
 start with initial values
 - •calculate costs
 - update values using an update functionreturn min costs for cost function
- X = X lr * f'(X)
- where f'(X) = d/dX f(X)

Gradient descent

- Need to find the derivatives ...
- Let's switch to the notebook
- [LIVE CODING]

pretty good!

Prediction for (1,0) --> Target value = 1

```
In [37]: point = np.array([1,0])
res1 = np.dot(point, weights) + bias # step1
res2 = sigmoid(res1) # step2
print(res2)
```

[0.9793702]

Prediction for (1,1) --> Target value = 1

```
In [38]: point = np.array([1,1])
res1 = np.dot(point, weights) + bias # step1
res2 = sigmoid(res1) # step2
print(res2)
```

[0.99998097]

Prediction for (0,0) --> Target value = 0

```
In [39]: point = np.array([0,0])
res1 = np.dot(point, weights) + bias # step1
res2 = sigmoid(res1) # step2
print(res2)
```

[0.04112867]

- Why bias?
- Suppose we have input (0,0)
- The sum of the products will always be 0
- **INDEPENDENTLY** of the weights
- Then the result will always be 0
- INDEPENDENTLY of how long we train
- Bias affect the shape of the sigmoid function (Live coding)

THE END

- For now.
- Next time: pytorch