
Gradient Descent

marco milanesio

MScDSAI



•Iterative first-order optimisation algorithm 
(1847)


•Find local minimum/maximum

•ML/DL to minimize cost function


Gradient descent



•Function must be differentiable

•Function must be convex


Requirements



Differentiable



Non differentiable



Convexity

X



•Find minimum for a convex function

•or a maximum for a concave function

•derivative = 0


•BUT:

•saddle points —> second derivative = 0

•local minimum: non convex function


•second derivative not always positive


Gradient descent



•Slope of a curve in a given point in a 
specified direction


Gradient

@M. Riveill - UniCA



•Choose a point

•While not (c1 and c2):


•Compute the gradient

•Scale it by a "learning" factor

•Subtract the value (minimize)

•Update the point


Gradient descent algorithm

pt+1 = pt − η∇f(pt)
c1 = max number of iterations

c2 = step size smaller than the tolerance

η



•Most important hyper-parameter

•Scales the gradient and control the step size

•Difference between convergence and 

divergence


Learning rate

@M. Riveill - UniCA



Numerical differentiation

df(x)
dx

= limϵ→0
f(x + ϵ) − f(x)

ϵ

slope =
f(x + ϵ) − f(x)

ϵ

f(x + ϵ) − f(x − ϵ)
2ϵ

central difference



Multivariate

∇f(x, y) =
∂f(x, y)

∂x
∂f(x, y)

∂y

z = f(x, y)

@https://math.libretexts.org



LAB SESSION

•Implement Gradient Descent for any 
multivariate function (NO NUMPY)


•Start with pen and paper. Discuss in pairs.

•Algorithm definition

•Function design


•Continue alone:

•Code the algorithm and the main file.




LAB SESSION

•API Description:

•Function hardcoded

•Return the final solution (i.e. the point in 

which the algorithm stopped) and the 
summary of the gradient descent 
algorithm (i.e., final function value) 


•Print to screen the results




LAB SESSION

•Examples of functions to test:


f(x, y) = (x − 3)2 + (y + 2)2

f(x, y, z) = − cos(x) − cos(y) − cos(z) +
1
10

(x2 + y2 + z2)

•But of course it will work for any function ;)

f(x) = − 2x + 5



LAB SESSION

•Return:

•1 python script "gd.py" containing the main 

algorithm

•1 python script "main.py" containing the function 

definition and the program entry point

•1 text file "yourname_gd.txt" containing a brief 

description of your implementation choices.

•Pack everything in a zip archive "yourname_gd.zip" 

and upload on Moodle (alt. email)

•Deadline: 16-9-2025 08:00 AM


