Intro to ML

marco milanesio

The problem

- n samples
- predict properties of the unknown
- · that is: learn what the properties are
- learning:
 - supervised
 - we know some of the attributes
 - unsupervised
 - we know nothing (almost)

ML in a nutshell

- supervised learning
 - classification
 - finite set of labels
 - regression
 - "classification" in the continuum
- unsupervised learning:
 - clustering
 - "similarity"
 - density estimation
 - distribution
 - dimensionality reduction

pipeline

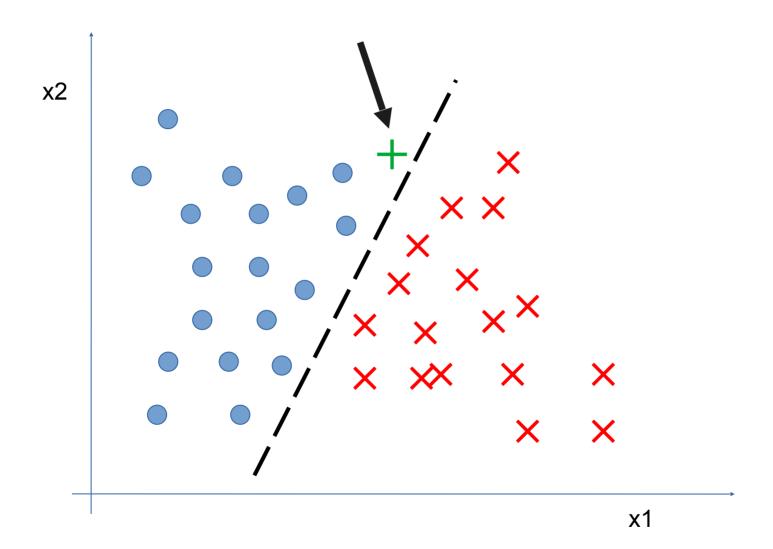
- gather the data
- clean the data
- create a model
- fit a model
- predict
- evaluate

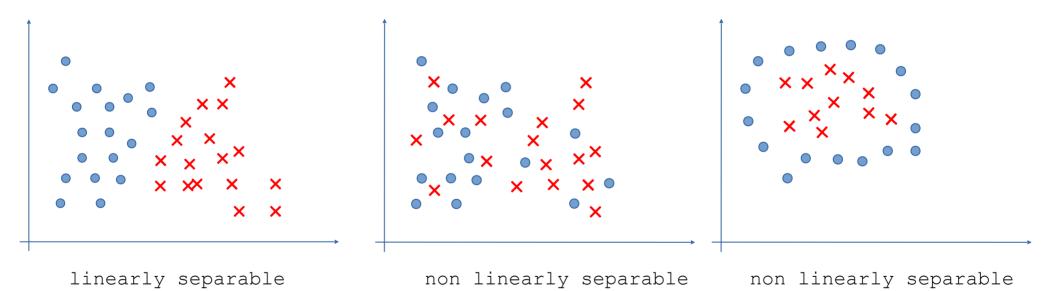
training/testing

- learning from training set
- predicting on testing set (unknown)
- 80-20 / 70-30
- overfitting
- imbalanced datasets:
 - oversampling
 - undersampling

supervised learning

- Goal: predict the categorical class labels
 - discrete
 - unordered
 - group membership
- Binary classification
 - -spam / no spam
 - cat / no cat
- Multi-class classification
 - handwritten digits





- logistic regression
- support vector machine
- decision tree
- random forest
- KNN

logistic regression

- perfect for linearly separable
- · can be extended to multiclass

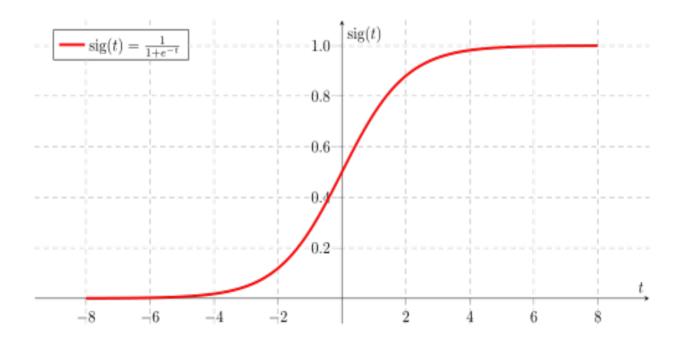
$$logit(P) = log \frac{P}{1 - P}$$

logistic regression

- the logit function takes input in [0,1] and returns in (-inf, +inf)
- express linear relationships between feature values and the log-odds
- logit(P(y=1|x)) = sum(W_iX_i) = W^TX
 - where $^\prime$ is the conditional probability that a particular sample belongs to class 1 given its features x.

sigmoid function

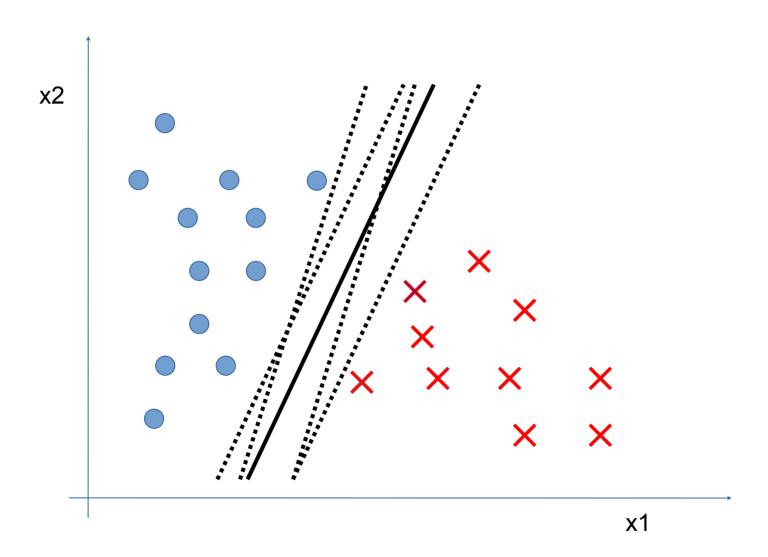
- the inverse of the logit function
- sigmoid(logit(p)) = p



sigmoid

- from $(-\inf, +\inf)$ to [0,1]
- takes real values and transform them in the [0,1] range with an intercept at 0.5
- THIS IS WHAT THE logit function does while trained.
- the output of the sigmoid is the probability of a certain sample to be of class 1, given its feature \mathbf{x} parametrised by the weights \mathbf{w}

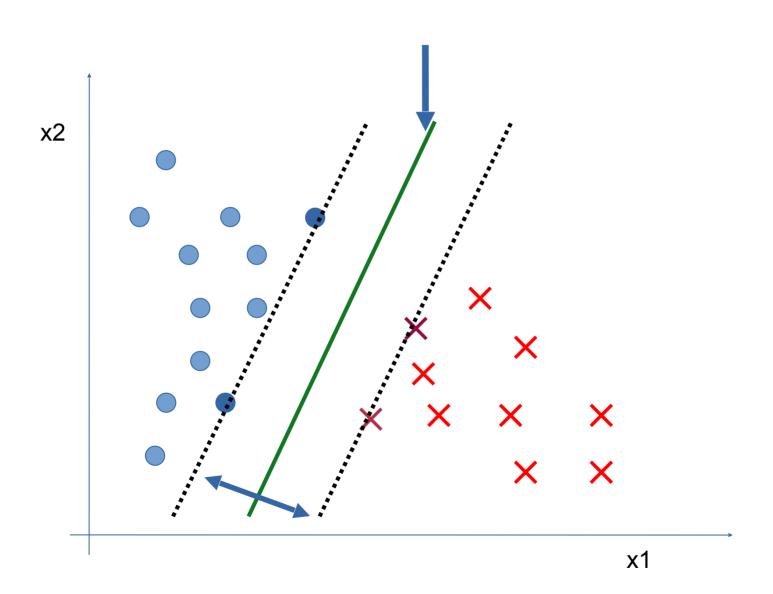
Support Vector Machine



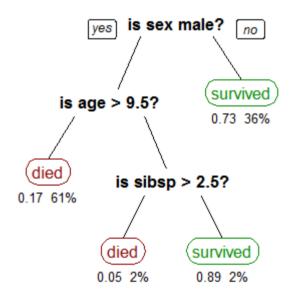
Support Vector Machine

- find a hyperplane in an N-dimensional space that distinctly classifies the data points.
- many possible hyperplanes that could be chosen.
- find a plane that has the maximum margin,
 i.e., the maximum distance between data
 points of both classes.

Support Vector Machine



Decision Tree



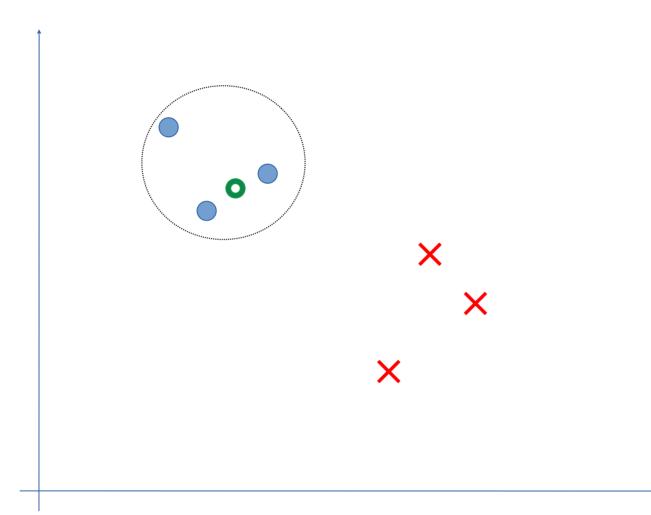
source: wikipedia

Decision Tree

- feature importance is KEY
- n features $\rightarrow n$ candidates splits
- calculate how much accuracy is lost for each split
- · the split that costs least is chosen
- WHEN DO WE STOP???
 - -max depth
 - min number of training inputs for each
 leaf

— ...

KNN



KNN

- Load the data
- Choose K
- For each point **p** in test data:
 - Compute distance between **p** and each training data
 - Sort in ascending order
 - -Choose the top ${f K}$ rows
 - Assign the most frequent class
- Done.

unsupervised learning

unsupervised

- No labels given
- GOAL: find structure
 - discovering hidden patterns in data

unsupervised

- trickier
 - no answer labels (no ground truth)
 - external evaluation vs internal evaluation
 - experts vs objective function
- but:
 - annotating large datasets is very costly
 (Speech Recognition)
 - we don't know how many classes can be (Data Mining)
 - gain some insight into the structure of the data before designing a classifier

clustering

- more problems:
 - define distance
 - define similarity
 - define clusters
- Examples:
 - Kmeans
 - Fuzzy Kmeans
 - GMM
 - Hierarchical

— ...

K-means

- Group input data into K groups
- Define K centers
- While "not converged":
 - Take each point and assign it to the "closest" center
 - Recompute centers
 - minimize inter-cluster distances